Нейронные сети становятся важным инструментом для современных компаний, однако их реализация требует больших вычислительных мощностей. Такие ограничения сужают спектр задач, которые можно решить с их помощью, особенно когда оптимизировать саму модель представляется невозможным. Однако внедрение программных средств и организационных правил в архитектуру ML-решения может помочь уменьшить потребление ресурсов без ущерба для точности.
В докладе расскажу про пример внедрения компьютерного зрения для контроля страховочной привязи. Вместе рассмотрим создание архитектуры CV-системы, включая использование внутренних и внешних детекторов движения и анализа видеопотока, а также внедрение организационных решений, способствующих сокращению вычислительных мощностей. Мы увидим прогресс в оптимизации ресурсов, которого можно добиться, а также обсудим возможные проблемы при построении такой ML-системы.