На этапе разведки месторождений нефти и газа геологам и геофизикам приходится решать множество сложных математических задач, одной из которых является обратная задача геофизики или сейсмическая инверсия.
Сейсмическая инверсия — это метод получения физических параметров из сейсмических данных, собранных в полевых условиях. Эти физические параметры представляют собой характеристики земных недр и имеют физическое и геологическое значение, поэтому сейсмическая инверсия — это количественная интерпретация сейсмических измерений, которая является одной из наиболее важных процедур интерпретации данных.
За долгую историю сейсмической разведки полезных ископаемых ученые предлагали различные подходы к решению проблемы инверсии, а в последние годы было предпринято множество попыток применить к этой проблеме методы машинного обучения.
В докладе мы немного углубимся в математику сейсмических задач, расскажем, как мы применили подход, основанный на данных, для решения физической задачи сейсмической инверсии, и обсудим перспективы машинного обучения в области больших данных сейсморазведки.